Matlab for REU by Xavier Thibert-Plante

Plan

- Questions about the previous session
- Iterative process
- Logistic map
- Ordinary differential equation

?

Setup

- All the material is at http://nimbios.org/~xavier/REU2012/
- Create a directory for this session <workdir>
- Download all the relevant material to <workdir>
- Open Matlab
- Set the working directory to <workdir>

Iterative process

• Lets count rabbits

$$F_{n} = F_{n-1} + F_{n-2}$$

• Fibonacci number

$$F_1 = F_2 = 1$$

Picture from Wikipedia

Plot the ratio

$$R_n = \frac{F_n}{F_{n-1}}$$

• What do you observe?

I converges to the golden ratio $\psi = \frac{1 + \sqrt{5}}{2} \approx 1.618$

• Which may remind you of the golden spiral

<Open spiralFib.m>

Logistic map

$$N_t = r N_{t-1} (1 - N_{t-1})$$

🛞 🗐 🗊 Editor - /home/xavier/public_html.nimbios/REU2012/logisticFct.m		
<u>File Edit Text Go Cell Tools Debug Desktop Window H</u> elp	XSK	
: 🞦 😂 🖩 👗 🐂 🛍 🤊 🥐 👹 🖅 - 🛤 🖛 🗰 fiz 🖻 - 🗟 🗶 🖷 🚽	» 🗆 🔻	
* [- 1.0 + ÷ 1.1 × 🕺 🕺 🕕		
<pre>1</pre>		
2	h	
$3 -\% \times (i) = r^* \times (i-1)^* (1 - \times (i-1))$		
4		
5 - x=ones(1, itMax);		
6 - ×(1)=initPop;		
7 - 🗇 for i=2:itMax		
8 - $\times(i)=r^*\times(i-1)^*(1-\times(i-1));$		
9 end		
10 - end		
logisticFct Ln 10 Col	4 OVR	

- Study the behavior of the time series for
 - 0 < r < 1
 - 1 < r < 2
 - 2 < r < 3
 - 3 < r < 3.45
 - 3.45 < r < 3.54
 - r = 3.57
 - 3.57 < r < 3.9
- N.B. Start your population at around 0.8 and plot around 100 iterations

Bifurcation map

?

Difference equation

• Logistic

$$\Delta N = r N (1 - N) dt$$

- Study the behavior at r=1.5 with different dt
 - Plot the time series, and label the x-axis correctly
 - Try different values, e.g. dt={0.001,0.01,0.1,1,2}.
- N.B. Start your population at around 0.8 and plot around 100 iterations

Simple differential equation

Continuous logistic growth

- Study the behavior of the time series for
 - 0 < r < 1
 - 1 < r < 2
 - 2 < r < 3
 - 3 < r < 3.45
 - 3.45 < r < 3.54
 - r = 3.57
 - 3.57 < r < 3.9
- N.B. Start your population at around 0.8 and plot around 100 iterations

?

Some more differential equation

Lotka-Volterra

$$\frac{dx}{dt} = \alpha x - \beta xy$$
$$\frac{dy}{dt} = \delta x y - \gamma y$$

😣 🗐 🗊 Editor - /home/xavier/public_html.nimbios/RE	
<u>File E</u> dit <u>T</u> ext <u>G</u> o <u>C</u> ell T <u>o</u> ols De <u>b</u> ug → → २ >	K
1) 🖆 📓 👗 🛍 🤊 (°) 🍓 🗇 - 💌 - 🔍 🛄 🕚	
* [- 1.0 + ÷ 1.1 ×]] *	
<pre>1 - global alpha beta delta gamma 2 % Define initial conditions. 3 - alpha=1.2; 4 - beta=0.8; 5 - delta=0.7; 6 - gamma=0.4; 7 - t0 = 0; 8 - tfinal = 30; 9 - y0 = [0.3 0.7]'; 10 % Simulate the differential equation. 11 - tfinal = tfinal*(1+eps); 12 - [t,y] = ode23('lotka',[t0 tfinal],y0); 13 % plot the result 14 - subplot(1,2,1) 15 - plot(t,y(:,1),'b') 16 - hold on 17 - plot(t,y(:,2),'r') 18 - xlabel('Time') 19 - ylabel ('Population size') 20 - legend('Prey', 'Predator') 21 - hold off 22 23 - subplot(1,2,2) 24 - plot(y(:,1),y(:,2)) 25 - xlabel('Prey') 26 - ylabel('Predator') 27 </pre>	Editor - /home/xavier/public_html.nimbios/REU20 Eile Edit Text Go Cell Tools Debug Desktop >> * ? × Image: Second
cript Ln 12 Col 39 OVE	

S

Modify the script to draw the isoclines

$$\frac{dx}{dt} = 0$$
$$\frac{dy}{dt} = 0$$

Thank you!

?