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Abstract 

A suite of simple metrics that can be used to analyse three-dimensional data sets is presented. We 
show how these metrics can be applied to raster-based, ecological mosaics sampled over uniform time 
intervals, such as might be obtained from a series of photographs or from repeated spatial sampling in 
the field. In these analyses, the concept of a 2D landscape “patch” is replaced by a 3D space-time 
“blob”.  The structure of a dataset can be analysed via the characterisation of blobs, using a number of 
simple composition and configuration metrics. The use of different metrics, including modified 
versions of some common landscape metrics such as contagion, that describe the distribution of blobs 
in space and time, is demonstrated using both model and empirical data. With the increasing 
availability of spatiotemporal data sets in ecology, such three-dimensional metrics may be 
indispensable tools for the detection and characterization of landscape change in the context of human 
and naturally caused disturbances. 
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Introduction 

With the advent of increasingly sophisticated grid-based ecological monitoring techniques, combined 
with the growing use of spatiotemporal models, ecologists now have at their disposal considerable 
amounts of data describing the evolution of ecological variables in both space and time.  In landscape 
ecology and earth systems science, for example, the availability of several decades of remote sensing 
images means that the study of landscape change over time is a common practice (Kienast et al., 
2007).  Similarly, spatially explicit ecosystem models generate reams of data describing the evolution 
of variables on simulated landscapes (see examples in Bascompte and Solé, 1998).  At the ecosystem 
scale, modern sampling programs often involve the automated measurement of specific variables at 
several spatial locations at fixed intervals over a period of time (Baldocchi et al., 2001; Collins et al., 
2006).  The availability of such data, combined with appropriate quantitative methods, should make it 
possible to study the inherently spatiotemporal nature of ecological dynamics. 

Here, we present some simple metrics that can be applied to the characterisation of the complex 
spatiotemporal dynamics of ecological mosaics (categorical maps).  These metrics apply to 3-
dimensional datasets (e.g., a time series of spatial images), allowing for the characterisation of 
volumetric entities (having 2 spatial dimensions and 1 temporal dimension) that we call “blobs”.  The 
behaviour of these different metrics is demonstrated for both model and empirical data.  We propose 
that blob analysis via 3D metrics permits an integrated method of characterising the spatiotemporal 
nature of ecological dynamics from the local to landscape scale.  

Spatiotemporal analysis in ecology 

Effective monitoring and characterisation of ecological dynamics necessitates a truly spatiotemporal 
approach.  Current methods of analysis in ecology are still largely centred on spatial or temporal 
analysis, but few address both space and time concurrently (Fortin and Dale, 2005; Bolliger et al., 
2007).  For example, indices of spatial heterogeneity do not include temporal variation (Gustafson, 
1998; Fortin and Dale, 2005) and methods of time series analysis typically do not include a spatial 
component. Even when both spatial and temporal information is available, via remote sensing images 
for example, the analysis is typically done in space, and then repeated for images taken at different 
moments in time, resulting in a time series showing the temporal evolution of a spatial indicator.  This 
approach is often taken to assess land cover change over time via the analysis of a series of remote 
sensing images (see for example, Hayes et al., 2002, Dunn et al., 1991).  Similarly, Tobin (2004) 
studied space-time correlation in population data by calculating spatial autocorrelation in the data and 
then studying how this spatial correlation varied in time.  Other methods involve the analysis of the 
temporal variation of specific points in space, and then compare this variation for different study sites 
(Liebhold et al., 2004).  For example, most time-series analyses of species abundances for a 
community are the result of a two-step process. An estimate of species abundances is first obtained 
across space (e.g., using central tendency estimators such as the arithmetic mean), and then the 
trajectory in time is characterized. It is well recognized in landscape ecology that such a spatial 
‘averaging’ process may generate scale artefacts (Jelinski and Wu, 1996; Rahbek, 2005).  For this 
reason, there is a need for truly spatiotemporal methods of analysis that do not ‘collapse’ spatial or 
temporal dimensions.  

While some recent statistical methods do allow for the detection of space-time patterns and clustering, 
they typically apply to irregularly sampled point data (Gatrell et al., 1996; Rogerson, 2006) or involve 
the analysis of correlations between time series recorded at different spatial locations (Bjørnstad et al., 
1999).  This method allows for a study of spatial autocorrelation of variation through time.  It has 
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been used to detect spatial synchrony in population dynamics and can also characterise more complex 
dynamics such as spiral waves when time-lagged spatial correlation is used (Liebhold et al., 2004). A 
few truly spatiotemporal methods of data analysis exist.  For example, the join count has been used to 
quantify pairs of observations in time and space for transect data (1 spatial dimension) (Fortin and 
Dale, 2005). Wilson and Keeling (2000) present a method of reducing spatiotemporal data from grid-
based models to lower dimensional vectors that can be used to characterize the structure of patterns 
observed. Recent work in geo-visualisation addresses the problem of describing and characterising 
higher dimensional space-time data, and methods such as the three-dimensional Fourier transform 
have recently been applied to detect space-time periodicities (Dykes and Mountain, 2003; Edsall et 
al., 2000).  The variogram and covariance matrix, typically used to measure roughness in spatial data, 
may also be applied in three dimensions (Isaaks and Srivastana, 1989; Porcua et al., 2007).  Lastly, 
Griffith’s space-time index (Griffith, 1981; Fortin and Dale, 2005) extends the notion of spatial 
autocorrelation to a temporal dimension using weights that include space and time in the calculation 
of distances between observations.   

While the above methods are typically applied to continuous valued variables, many are flexible 
enough to incorporate both continuous and categorical variables, as well as regular or irregular grids. 
However, these methods are typically based on linear mathematical models, assuming stationarity in 
time. Such models may fail to capture the complex spatio-temporal dynamics of ecological data. 
Secondly, these methods generally provide information about the scale or frequency of ecological 
processes (e.g., space-time variograms and correlograms), but not on the ‘complexity’ or 
‘heterogeneity’ of the process per se. They can be considered as complementary to the metrics 
presented here, and to the collection of metrics developed by landscape ecologists to characterize the 
patterns present in ecological mosaics.  

An ecological mosaic is a raster-based grid of categorical values describing the distribution of a 
specific ecological variable in space.  The idea of ecological mosaics was first presented by Pielou 
(1969), who proposed a number of effective ways of analysing spatially-structured categorical data.  
Spatial mosaics are at the basis of most analyses in landscape ecology, which typically apply to raster 
data from remote sensing (Forman, 1995).  Landscape ecologists have developed an entire suite of 
landscape metrics, designed to describe the composition and configuration of “patches” on a 
landscape, where a patch is defined as a contiguous region of cells (or pixels) containing the same 
categorical value (Gustafson, 1998; Turner et al., 2001).  Patches may form part of a mosaic of patch 
types, or else a single patch type on a background matrix may be studied.  In landscape ecology, 
researchers describe and characterise landscape change via the analysis of how key landscape metrics 
change from one moment in time to another (e.g., via the analysis of a historical series of satellite 
images or aerial photographs). The study of ecological mosaics has recently come to the forefront in 
other areas of ecology as well, with Murphy and Lovett (2004) calling for the use of mosaics for 
sampling in ecology as a means of better understanding metapopulation dynamics. 

Here we present a suite of simple metrics that can be used to characterize the spatiotemporal 
dynamics of n-phase spatial mosaics. The metrics explicitly consider a temporal dimension in the 
analysis of spatial data.  They are all extensions of common landscape metrics and information-based 
measures such as diversity, contagion and fractal dimension.  While our examples are limited to 
specific ecological situations, these metrics can easily be applied in any field where three-dimensional 
data exist (e.g., measurements of a system involving at least 3 variables).   
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Methods 

Our analyses are applied to space-time cubes1 of data, having two spatial dimensions (x,y) and a third 
time (t) dimension.  Thus, a space-time cube is simply a stack of successive spatial “images” in raster 
format that capture the state of a landscape or other spatial environment, sampled at uniform time 
intervals. The variable measured will typically be semi-qualitative or quantitative, and be divided into 
categories.  Each spatial image is a grid of cells (also called ‘pixels’), each of which has an associated 
value, corresponding to a type or category (Figure 1a).  When we add the temporal dimension, a 
spatial pixel becomes a 3-dimensional ‘voxel’ having two spatial dimensions and a temporal 
dimension, the depth of which is equal to the sampling interval in time (Figure1b). 

In the space-time cube, persistent entities in the dataset take on 3-dimensional forms composed of 
voxels that are adjacent in space-time. We call these 3-dimensional forms “blobs” and all of our 
analyses treat the characteristics of blobs in the space-time cube (Figure 1c).  For example, a spatial 
patch (defined as a contiguous area of pixels) whose area remains constant over time will form a blob 
in space-time that has a columnar shape, whereas a patch that changes shape over time will form a 
blob having a much more complex form in space-time. This manner of representing space-time is 
similar to that used by geographers working with spatiotemporal data in GIS software (Peuquet, 
2001) although most inquiries in time geography deal with trajectories (lines) in a space-time cube 
and not volumes composed of voxels.  Exceptions include Forer (1998) who coined the term ‘taxel’ to 
describe a 3-dimensional entity in space-time in the context of studying the evolution of human 
constructs in urban landscapes and Morris et al. (2000) who developed a 3D visualisation system for 
GIS in which 2-D spatial entities have a third temporal dimension. 

Blob analysis: 3D Composition metrics 

Space-time density, number of blobs, distribution frequency and blob shape complexity 

As for patches on a landscape, we can specify categories corresponding to different blob types. In a 
space-time cube of dimensions Nx, Ny, Nt voxels, each voxel thus belongs to one of b blob types, and 
adjacent voxels of the same type form a single blob. We consider a distinct blob to be a contiguous 
volume of identical voxels, where adjacency can be defined according to a 26-cell “Moore” 
neighbourhood or a 6-voxel “vonNeuman” neighbourhood.  In the former, two voxels sharing a face, 
an edge or a point are considered to be neighbours, in the latter, only voxels sharing faces are 
considered to be neighbours. The volume of a blob is the sum of the number of voxels it occupies.  Its 
surface area is defined as the number of faces not shared by an adjacent voxels of the same blob type.  
Similarly, we can define the bounding box as being the smallest hexahedron that can contain the blob. 

Traditional composition metrics for landscape patches (area, perimeter, deviation from the mean, etc.) 
may thus be calculated for blobs.  Composition metrics provide information about the constitution of 
the space-time cube.  For each blob, a number of characteristics such as its type, volume, surface area, 
bounding box, centre of mass, etc. can be calculated. Similarly, we can also calculate a number of 
statistics describing the collection of blobs in the space-time cube, including: average and standard 
deviations of blob sizes (volumes), the frequency distribution of blob sizes (volumes), the space-time 
density (number of voxels occupied by a blob type divided by the total volume of the space-time 
cube), total edge (surface), etc.  Shannon diversity metrics for the b blob types (weighted by blob 

                                                   
1 The word “cube” is used here for simplicity although the space-time cubes are, in fact, hexahedrons 
since the 6 faces are not necessarily square (i.e., Nx ≠ Ny ≠ Nt). 
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volumes) can also be used to describe the composition of a space-time cube. A dataset with more 
complicated spatiotemporal dynamics may have more blob types, a higher standard deviation of blob 
sizes, a higher ratio of surface area to volume (i.e., complex blob shapes) or an uneven frequency 
distribution of blob sizes, for example.   

To describe the complexity of blob shapes we use the ratio of blob volume to bounding box volume 
(we call this ratio the ‘shape complexity’). The value equals 1 for simple rectangular objects and 
tends to 0 for objects that have a volume much smaller than the volume of their bounding box.  This 
ratio gives a rough measure of the form of a blob, with more complex shapes tending to have lower 
values.  We note that the ratio is much too simplistic to be a satisfactory measure of blob shape 
complexity, since it is subject to many exceptions (e.g., a spatiotemporal line going diagonally from 
one corner of a rectangle to another will have a ratio close to zero).  The ratio does, however, give a 
rough idea of the volume occupied by a blob and thus of it’s respective form. 

Fractal dimension 

The fractal dimension is a measure commonly used to describe the degree to which an object occupies 
its topological volume.  It is commonly used in landscape ecology to describe the complexity of 
landscape patterns (Milne, 1991) and has been used in soil science and other fields to describe the 
complexity of 3-dimensional objects such as soil pore structure (Perret, 2003).  An object’s fractal 
dimension approaches its topological dimension (e.g. 2 for a surface or 3 for a volume) for very 
smooth objects.  Irregular objects tend to have fractional fractal dimensions, indicating that they have 
complex, possibly self-similar, shapes.  There are many ways to estimate the fractal dimension of an 
object.  Here, we use the box-counting algorithm (Peitgen et al., 1992), which is one of the most 
common methods.  The algorithm counts the number (N) of 3 dimensional boxes of length (L) needed 
to cover the non-zero elements of the data cube.  For a fractal object, N scales as a function of Ld, 
where d is the fractal dimension.  

Blob analysis: 3D Configuration metrics 

Similar to 2D landscape configuration metrics, 3D configuration metrics describe how the blobs are 
distributed in space-time, taking into consideration adjacencies between cells of different blob types.  
These metrics can be used to compare the observed spatiotemporal distributions to random patterns.  
As is done for spatial patterns, a frequency table of blob adjacencies can serve to describe the 
complexity of the space-time pattern. More complex metrics may build upon the adjacency table.  
Here, we present and test two configuration metrics: contagion and spatiotemporal complexity. 

Contagion 

Contagion (O’Neill et al., 1988; Li and Reynolds, 1993; Ritters et al., 1996) is a measure that was 
originally developed for the analysis of landscape patches and is typically used to measure the 
dispersion or “clumpiness” of different patch types.  Contagion compares the expected frequency with 
which two patch types should be adjacent for a random case with the actual frequency observed on a 
landscape.  Here, we extend Li and Reynolds’s (Li and Reynolds, 1993) formulas for contagion to 
three dimensions in order to measure the space-time dispersion of blob types.  The metric is based on 
a calculation of the probability of finding a voxel of blob type i next to a voxel of blob type j.  Note 
that the calculation is based on voxel (not blob) adjacencies. The value of contagion ranges from 0 to 
1.  Space-time cubes full of large, contiguous blobs give rise to high values of contagion, whereas a 
completely random mix of cell types gives rise to 0 contagion.  Thus, high contagion corresponds to a 
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fairly contiguous landscape that does not change substantially in time. The calculation for b blob 
types is as follows: 

RC = 1 – EE / EEmax   

where: 

RC = contagion, as proposed by Li and Reynolds (1993); 

EEmax = b ln(b) 

! 

EE = " pij ln pij( )
j=1

b

#
i=1

b

#  

! 

pij = nij /ni  

nij = number of adjacencies between voxels of blob type j and voxels of blob type i 

ni = number of voxels of type i 

Spatiotemporal complexity (STC) 

Spatiotemporal complexity measures how one type of blob occupies the 3-dimensional space, i.e, how 
the spatiotemporal landscape is structured.  This measure was developed specifically for the analysis 
of space-time data.  It was first introduced and demonstrated using data from an individual-based 
model in Parrott (2005). The metric applies only to 2-phase mosaics (i.e., space-time cubes with 2 
blob types, or one type in a background matrix).  More varied data must, therefore, be binarized 
before analysis.  This can be done by selecting the mean (or some other pertinent) value and setting 
all values below the mean to blob type i and all that are above to blob type j.  Alternatively, the 
analysis can be done for one particular blob type, considering all others to be the background matrix.  

Spatiotemporal complexity is calculated by looking at the contents of successively offset 3D windows 
(of dimension n x n x n, where n is an arbitrary length that is considerably smaller than the data cube 
dimensions) in the space-time cube. For each possible placement of the 3D window in the cube the 
number of voxels occupied by blob type i is counted.  The measure is based on observed frequencies 
of the different possible occupation levels, Mk ∈ {0…n3}: 

! 

STC =

" pk ln pk
i= 0

n
3

#

ln(n
3

+1)
          0 < STC < 1 

where: 

STC = spatiotemporal complexity 

Pk = relative frequency of Mk 
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Division by ln(n3+1) serves to normalise the measure.  The value of STC ranges from 0 for the 
completely ordered case (equivalent to a space-time cube of solid zeros or ones) to 1 for the most 
complex case (equivalent to observing all occupation levels with equal frequency; i.e., a space-time 
cube containing both sparse and clumpy regions).   

Data sets 

To explore the behaviour of the different 3D metrics, a series of analyses was performed on six model 
data sets and one empirical data set. For the purposes of this demonstration, we treat only 2-phase 
spatial mosaics (2 blob types; equivalent to one type in a background matrix), although for some of 
the studied data sets, we could have included more categories.   

Each modelled data set consists of a time series of 1000 successive images of approximately 100 x 
100 cells.  The first two sets are simply cubes of uniformly distributed random numbers.  In the first 
set (Random), we assign all values < 0.5 to blob type 1 and all values ≥ 0.5 to blob type 2.  In the 
second set (Random30), values < 0.3 are set to blob type 1 and all other values are blob type 2. The 
third set (Column) contains a single square column composed of blob type 1 voxels in the centre of 
the data cube.  The fourth set (Spread) contains an inverted pyramid in the data cube, imitating the 
successive spread of a square patch of blob type 1 voxels. The fifth set (Lotka-Volterra) was 
generated using Wilson’s (2000) spatial reaction-diffusion model of Lotka-Volterra dynamics.  
Voxels containing prey are assigned blob type 1 and all other voxels are assigned blob type 2.  Lastly, 
the final set (Host-Parasite) contains spatiotemporal data from Hassell’s host-parasite model (Hassell 
et al., 1991), which is known to generate a form of spatiotemporal chaos characterised by spiralling 
waves under some parameter values (here we used 8.0==

PN
µµ ).  Voxels containing the host are 

set to blob type 1 and all other voxels are set to blob type 2. Figure 2 shows sample images (2D 
slices) for each of the model data sets. To provide the reader with an idea of what this quantity of data 
looks like in three dimensions, a visualisation of the entire space-time cube of the Lotka-Volterra data 
is provided in Figure 3. 

The empirical data set consists of a series of 100 photographs that capture the understory light 
variability in a Quebec hardwood forest during the spring budburst.  The photographs were taken at 
the exact same location at 30-minute intervals over a period of 5 days from 8h00 to 17h30.  The 
photographs were taken with a digital camera and were subsequently processed to produce low 
resolution, greyscale images (Figure 4).  The images were then binarised (white and black) using a 
cut-off of 0.4.  All of our analyses were done on the black voxels.  Further details of the dataset and 
photographic setup are given in Proulx and Parrott (2008).  

Results 

For each data set, we calculated blob metrics for blob type 1, including: blob volume and shape 
characteristics and frequency distributions, density, fractal dimension, contagion and spatiotemporal 
complexity. For the purposes of demonstration, we calculated only a limited number of composition 
metrics for our datasets, selecting those that are non-trivial for 2-phase mosaics. Results of the 
calculations for the selected composition and configuration metrics are given in Table 1. Distributions 
showing the frequency of blob volumes are given in Figure 5.   

Composition metrics 

Space-time density, number of blobs, distribution frequency and blob shape complexity 
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A study of the space-time density of each data set compared to the number of blobs present, gives 
important initial information about the composition of the data cube.  Four data sets (Random30, 
Column, Spread and Lotka-Volterra) all have a density of 30, but have very different numbers of 
blobs, indicating very different spatiotemporal patterns.  The two sets containing only 1 blob (Column 
and Spread) can be differentiated by studying their shape complexity measures, through which we 
learn that the Column data set contains a single rectangular object (shape complexity = 1). The 
spiralling waves in the host-parasite model give rise to large contiguous areas in the Host-Parasite 
data set, explaining the low number of blobs.  From the low blob shape complexity, we see that these 
blobs must have a fairly sparse form.  The Random30 and Lotka-Volterra data sets both contain very 
large numbers of blobs and have similar frequency distributions of blob sizes (Figure 5), with the 
important exception that the Lotka-Volterra data set has a fat-tailed distribution (as evidenced by the 
presence of low frequency, high volume blob(s), the presence of which is highly improbable for 
random data). A study of the frequency distributions of blob volumes is important for distinguishing 
random and complex data sets: while all but the Host-Parasite data sets appear to have power law 
distributions of blob volumes, those that have more complex spatiotemporal distributions (Lotka-
Volterra and Forest) gives rise to distributions with fat tails (Figure 5).  

Fractal dimension 

The fractal dimension of each data set was estimated using the box counting algorithm.  A graph of 
ln(N) versus ln(L) was generated and d was estimated as the slope of the best fit line through the 
points.  The Forest data set was the only data set that was truly fractal, for which N α Ld over all 
scales.  The other data sets, several of which are clearly not fractal, showed scaling relationships over 
limited ranges of L and the value of d was estimated for this range.  All of these sets have d ≈ 3, 
indicating that their dimensions are close to the topological dimension of 3.  

 

Configuration metrics 

Contagion 

The contagion measure was calculated for all of the data sets using both von Neumann and Moore 
neighbourhood (6- and 26-neighbourhood sizes respectively).  Contagion responds in a predictable 
fashion, giving a value of zero for the Random data set and the highest value to Spread.  It is thus 
useful for characterising the degree of dispersion in a data set.  Contagion is, however, sensitive to the 
density of the data set (giving a non-zero value to Random30) and to the neighbourhood type.  The 
measure is also not able to differentiate the Lotka-Volterra dynamics (contagion = 0.15) from random 
space-time dynamics having the same blob density (Random30, contagion = 0.12). 

Spatiotemporal complexity 

The spatiotemporal complexity was calculated for each data set using a moving window size of 3x3x3 
cells.  The choice of window size was arbitrary (although see discussion below). STC is much more 
effective than contagion at describing the complexity of the spatiotemporal pattern.  It clearly 
differentiates between uniform blob shapes (Column and Spread both have low STC values), random 
patterns (both random data sets have STC values around 0.7) and complex patterns (the Lotka-
Volterra, Host-Parasite and Forest data sets all have high values (>0.9) of STC).  It is also capable of 
distinguishing between the 4 data sets that all have a density of about 0.3 but which have different 
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spatiotemporal patterns.  This measure is thus highly recommended for characterising the complexity 
of spatiotemporal data. 

Discussion 

None of the metrics presented here can completely characterize a dataset.  Each captures different 
aspects of how the blobs are distributed in space-time.  Appropriate use of these metrics requires 
knowledge of what each one represents, and a combination of metrics is required to describe the 
overall spatiotemporal dynamics. An informed analysis using a suite of 3D metrics to compare data 
sets will, therefore, distinguish between different types and distributions of data.  In general, the most 
complex data sets (Lotka-Volterra and Forest) had fat-tail power law distributions of blob volumes 
(indicating a scale-free structure in space-time) and high values of STC.  Simple data sets, consisting 
of a single solid object (Column or Spread) had high values of contagion and low STC.  It is 
interesting to note that the natural dataset (Forest) is the only example that exhibits a scale-free 
structure both in the calculation of the fractal dimension via box-counting and in the distribution of 
blob volumes.  It also has the highest value of spatiotemporal complexity (STC=0.96).  All of these 
indicators suggest that the natural dataset probably has the highest degree of complexity.   

We note also that the analyses presented here were limited to 2-phase mosaics for reasons of 
simplicity, however all of the metrics (except for STC) are applicable to n-phases.  The study of n-
phase data (where n>2) opens up much richer possibilities for the characterisation of spatiotemporal 
dynamics and may enable the comparison of the dynamics of different categories of blobs on the 
same landscape.  

 

Neighbourhood effects, extent and grain of the dataset 

Like 2D landscape metrics, the values of the 3D metrics presented here will also be affected by 
neighbourhood and edge effects as well as by the extent and grain (resolution or size of the smallest 
sampling unit) of the dataset. We note that although the choice of neighbourhood affected the number 
of blobs identified in our datasets, it did not have a large effect on the values of the other metrics. It is 
well known, however, that the size of the sampling unit as well as the extent of the data set will 
change a number of attributes of spatial data, including variance, autocorrelation, and mean patch size 
(Dungan et al., 2002). Clearly, the extent and resolution of a dataset affects the number of scales over 
which certain dynamics can be observed.  It is also possible that for certain data, there are “critical” 
resolutions at which certain phenomena are observable, and that the data is most (or least) complex at 
these resolutions. A thorough study of all of these factors should be done in future work. 

Notes on the fractal dimension 

While well defined for perfect mathematical objects, when applied to real objects, the fractal 
dimension is a problematic measure, since it is only applicable over a limited range of scales.  It also 
does not appear to be very sensitive to differences in spatiotemporal pattern, since it was unable to 
discern between the randomly distributed data versus solid objects in our data sets.   

Notes on the spatiotemporal complexity measure and choice of window size 
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This measure is superior to many others for the characterisation of the overall spatiotemporal pattern 
in a data cube. However, like other measures such as contagion, STC must be interpreted with 
caution.  Its value is also affected by the density of the data cube and by the size of the moving 
window used to sample the data (here we always used a window of 3x3x3).  When calculating STC 
for a data set, the value obtained should always be compared to that for random data having the same 
density. Figure 6 shows the effect of varying density and window size on the calculation of STC for 
randomly distributed data.   

Data cubes that have large variations in density over space or time may give overall STC values that 
poorly represent the type of dynamics present.  For example, a cube with periodic spatiotemporal 
dynamics alternating between a completely occupied spatial configuration (STC=0) and a random 
spatial configuration (STC=0.7) would give an overall STC value somewhere between the 2 cases.  
For an overall STC value to be characteristic of the whole space-time cube, data density should be 
relatively stationary in space and time.  In situations for which this is not the case, sub-sampling of 
the data cube would be more appropriate.   

Lastly, it is not necessary that the moving window used for STC calculations be cubic (square on all 
sides).  The moving window may take on any dimension, and it may make sense, for example, in a 
case where the spatial resolution is much finer than the temporal resolution, to use a window having a 
large spatial extent and a smaller temporal dimension (e.g., 3n x 3n x n).  The choice of window size 
is also something to consider when using STC and the effect of different window sizes should be 
tested on a dataset.  As shown in Figure 6, for random data, the value of STC converges towards a 
stable value with increasing the window size.   

 

Sub-sampling 

For sufficiently resolved data sets (e.g., high values of Nx, Ny and Nt) there are a number of interesting 
analyses that can be done via the sub-sampling of the data cube.  Metrics such as contagion and STC 
can be calculated for specific volumes of the space-time cube in order to detect regions of high 
complexity (e.g., areas on a landscape that, via their dynamics, are more complex than others) or 
regions for which the spatiotemporal dynamics is essentially random (as indicated by a low contagion 
value and an intermediate value of STC). Such sub-sampling will allow for a finer analysis of the 
space-time dynamics, potentially enabling the differentiation of regions governed by different 
underlying ecological processes. Sub-sampling may be done along only one axis (e.g., by taking 
successive “slices” of the cube in time) as a means of studying how the metric varies along this axis.  
In Parrott (2005), an STC analysis of vegetation dynamics in a model ecosystem based on 
calculations of successive temporal slices of the data set, was used to show how the spatiotemporal 
complexity of vegetation patterns varied over time in response to disturbance.  The analysis showed 
that STC decreased immediately after disturbance and then increased as the community recovered.   

Applications to ecological monitoring 

Effective monitoring and characterisation of ecological dynamics necessitates a truly spatiotemporal 
approach.  Almost all ecological variables exhibit a heterogeneity that varies in space and time.  
Exogenous factors that affect ecological processes are also heterogeneous in space and time.  
Ecological processes are thus affected by multiple, interacting variables that have different 
spatiotemporal patterns and which all contribute to emergent, ecosystem level properties. 
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Characterisation of these spatiotemporal patterns is thus a key element necessary for the 
understanding of ecological dynamics, particularly in the face of disturbance and climate change that 
might alter the historical spatiotemporal distributions of certain variables.  It is thus imperative to be 
able to characterise the spatiotemporal distributions, as a means of monitoring and detecting change.  
Metrics such as those presented here are a possible approach, amongst others.  Such metrics can be 
calculated for known ecological regimes, and serve as baseline values against which other systems 
may be compared.  Lastly, the use of such metrics, especially those that characterize the complexity 
of the spatiotemporal dynamics, can serve as a common reference scale for the comparison of 
completely different systems and/or variables. 

Future work 

A limitation of all of these metrics is that they are applicable only to univariate data.  Further work 
should include the development of measures for multivariate data, allowing, for example, the 
comparison of how 2 or more variables evolve in space-time. In addition, all of these metrics apply to 
categorical data, thus continuous variables need to be classified before analysis.  Such categorisation 
ultimately results in loss of information and may cause artefacts, depending on the choice of 
boundaries and the number of categories used.  In cases where this is problematic, other methods 
(such as 3D variograms) designed for continuous variables are more appropriate. Some of the metrics 
presented here may be adapted to deal with particular cases, such as irregularly sampled data, that are 
common in ecological data.  For example, the definition of “neighbourhood” could be redefined.  
Through the use of a weighted distance matrix, a neighbourhood may be considered to be simply a 
certain number of nearest neighbours.  Alternatively, a neighbourhood could be defined as all points 
residing within a sphere of a given radius.  In certain cases, irregularly sampled data or data with 
missing values may be interpolated to generate a grid-based data set.  Many specialised interpolation 
routines exist, including methods for 3 and 4 dimensions (Li and Revesz (2004)).  Lastly, in all of our 
examples, we have referred to spatiotemporal data.  It should not be forgotten that all of the metrics 
presented here are equally applicable to any 3-dimensional dataset.  With modified definitions of 
neighbourhood adjacencies, some of these metrics may also be applied in higher dimensions (e.g., x, 
y, z and t). 

Conclusion 

We have presented a number of 3D metrics that can be used to describe raster-based spatiotemporal 
data.  These metrics are not a panacea, but are intended to contribute to the growing toolbox of 
methods available to ecologists to analyse spatiotemporal data.  We have purposefully extended 
already existing concepts of “patch” and associated landscape metrics to 3-dimensions in order to 
remain within the existing conceptual framework used to analyse raster-based ecological mosaics. 
The problem of classification that exists for all raster data is, of course, present.  Many environmental 
variables are continuous in both space and time and discretization is scale-dependent and error-prone.  
When working with such data, one should always be aware of these limitations.  On the other hand, 
many of the available datasets and existing sampling methods in ecology are grid- or raster-based, and 
it is therefore essential to continue the development of methods that are adapted to this type of data.  

The methods presented here were developed by the authors as a way of dealing with the vast amounts 
of spatiotemporal data being generated by our ecological models.  Such data is increasingly abundant 
amongst ecological modellers.  In addition, repeat photography by field ecologists, combined with 
over 30 years of satellite data means that spatiotemporal datasets are increasingly common.  The time 
is ripe to develop novel methods capable of analysing such spatiotemporal data.  We hope that the 
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ideas presented here will be adopted and further developed by others searching to understand and 
characterise the inherently spatiotemporal dynamics of ecological systems. 
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Figure 1: Format of spatiotemporal data used for the 3D metrics presented in this article: (a) An 
example ecological mosaic composed of categorical raster data; shades of gray correspond to 
different categories or patch types; (b) A pixel in raster data becomes a 3-D voxel in space-time 
having dimensions equal to the spatial (Δx, Δy) and temporal (Δt) sampling resolutions.  
Neighbouring voxels are used to calculate adjacencies for metrics such as contagion; the von 
Neumann neighbourhood is shown here; (c) A stack of spatial mosaics taken at successive points in 
time can be used to generate a 3-dimensional data matrix in which spatial patches take on an 
additional temporal dimension to become “blobs” composed of 3D voxels.  
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Figure 2: Examples of the different model data sets for selected moments in time. The analysed blob 
type is shown in white and the background matrix is black.  (a) Random; (b) Random30; (c) Column; 
(d) Spread; (e) Lotka-Volterra; (f) Host-Parasite. 
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Figure 3: The space-time cube of Lotka-Volterra data (dimensions 100 x 100 x 1000 voxels) showing 
the stack of successive snapshots of the presence of the prey species on the landscape.  Voxels 
containing prey are shown in grey; the background matrix is black. 
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Figure 4: Two snapshots from the forest data set.  Above: low resolution greyscale images; below: 
binary versions used for the blob analyses. 
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Figure 5: Probability density function of the volume of blobs present in selected data sets, using the 
von Neumann neighbourhood.  Both axes are in the log scale. 
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Figure 6: Effect of varying density and window size on the calculation of STC for uniformly 
distributed random data.  Each line is for a cube having a different data density.  Lines for equivalent 
densities (i.e., 0.4 & 0.6; 0.3 & 0.7; etc.) are overlapping.  STC = 0 for densities of 0 and 1.0 
regardless of window size. 
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Table 1 

Values of composition and configuration metrics calculated for the model and empirical datasets. 
Shading indicates the four data sets having similar space-time densities.  Confidence intervals for the 
STC values are 1 standard deviation and were calculated using 166 subsamples of the dataset. 

 



Dimensions Density Fractal Spatiotemporal

Nx x Ny x Nt dimension complexity

Data set Von Neuman Moore Mean Std Mean Std Von Neuman Moore (STC)

Random 99x99x1000 0.50 91744 5 0.99 0.08 0.90 0.22 2.9* 0.00 0.00 0.71±0.00

Random30 99x99x1000 0.30 574187 669 0.87 0.26 0.97 0.12 2.8* 0.12 0.12 0.69±0.00

Column 100x100x1000 0.30 1 1 1.00 0.00 1.00 0.00 2.9* 0.87 0.87 0.25±0.00

Spread 100x100x1000 0.3 1 1 0.34 0.00 0.34 0.00 2.8* 0.96 0.93 0.23±0.00

Lotka-Volterra 99x99x1000 0.29 498149 1390 0.96 0.13 0.76 0.31 2.8* 0.15 0.15 0.91±0.03

Host-Parasite 99x99x1000 0.67 11 11 0.37 0.12 0.37 0.12 2.9* 0.36 0.26 0.90±0.01

Forest 150x150x100 0.42 15641 3782 0.93 0.17 0.86 0.26 2.7 0.25 0.17 0.96±0.05

*value was estimated over a limited range of scales

Contagion

Configuration metrics

Blob shape complexity

Von Neuman Moore

Composition metrics

Number of blobs
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